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Abstract 

For an unbounded quantum mechanical observable A, the expectation value (A):  and 
the mean square deviation A:A cannot be defined for all (pure) statesfby (A):  = (f ,  Af)  
and ( A : A) 2 = ( f, A2 f ) - ( f, A f  ) 2, respectively. More general definitions are given here, 
which are also valid for state mixtures (density matrices). A general uncertainty relation 
for unbounded observables is derived. 

1. Introduction 
The definitions 

( A ) :  = ( f ,  A f )  (I.1) 
and 

(A>w = tr (AW) (1.2) 

for expectation values of  a quantum mechanical observable A in states 
described by a unit vector f (pure states) and a density matrix W (state 
mixtures), respectively, are valid for a l l f a n d  W only if A is bounded. We 
will investigate here the modifications of (1.1) and (1.2) which are necessary 
if A is an unbounded self-adjoint operator. 

Although this problem is scarcely relevant for practical applications of 
quantum theory, it should not be entirely ignored if one wants to formulate 
the foundations of  quantum theory with some mathematical rigor. More- 
over, the effort required for a satisfactory generalization of  (1.1) and (1.2) 
is moderate. In order to make the paper more easily readable, we have 
included a short review of some mathematical results which, although 
well-known to mathematicians, do not yet belong to the standard machinery 
of quantum mechanics. 

Consider the spectral representation 

A = I ~ dE,. (1.3) 

of  an unbounded self-adjoint operator A, corresponding to some physical 
observable, on a Hilbert space o~g. From a physical point of  view, the 
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unbounded observable A is the idealized limit of bounded observables 
n 

Amn = f A dEa + n(1 - En) - mE_z (1.4) 
~ m  

because each real measuring instrument for A has a finite scale ranging, 
say, from - m  to +n, with m and n positive. We thus define 

<A>~ = lim <Amn>f= lim (f, Az, f )  (1.5) 
d . f .  m ,  n ->  oo m , n ~  r 

for all unit vec torsfs  ~ for which this double limit exists. An alternative 
choice would be 

n 

Amn = f ,~ dEz 
--tit 

This modification of (1.4) would not change any of our conclusions. 
Now consider, besides A, the operators 

m 0 

f e_= f 12[l/ZdE;~ (1.6) 
0 - - o 0  

and 

such that 

r 0 

A§ = f A_= f (,.7) 
O - - o 0  

A+ + A_= A, B+ + B _ =  [A] ~/2 

If Do denotes the domain of definition of an operator O, we have 

-DA = DB+ f'l DB_ =-- Dlal~tz ~ Da (1.8) 
d . f .  

and 
f ~ / ~ a  +-+ 5 121 d ( f  Exf)  < ~ (1.9) 

For non-negative A,/3A is known to be the domain to which the sesqui- 
linear form (f,  Ag), f ,  g z DA may be extended by closure (Kato, 1966). 
A similar result is obtained here: 

Lemma 1. The expectation value (1.5) exists if and only i f f~ /3a .  For 
such f,  

r  = I[S§ ~ - l i B _ f  f? = $ ~d ( f ,  E~f) (1.10) 
If, in particular, f ~  Da, then 

<ASy = (f, A f )  (1.11) 

Proof. By (1.4) and (1.5), (A>s exists if and only if both 

a+ = l im.  f 2d(f ,  Exf )  + n(f,, [1 - E,]f)  
" ~  ( 6  
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and 

a_ = lim L I d(f, Ez f )  + re(f, E_, , f  

are finite, (A) :  being equal to a+ - a_. Moreover, (1.6) and the estimates 
O0 ~ / n  

O<~n(1-En)<~ f 2dE~, O<~mE_,,, <~ f l lde  
1l m O O  

imply that a+_ is finite and equal to IIB+fll 2 if and only i f f e  DB~. 

In the next section, we will describe a formalism which allows the 
generalization of  this result to state mixtures (density matrices) W. 

2. Description of State Mixtures by Unit Vectors 

Usually, the description of  pure states f and mixtures W is unified by 
using equation (1.2) throughout, with W =  [ f ) ( f l  for a pure state. For  
our purposes another formalism is more appropriate, which describes all 
states, pure or mixed, by unit vectors of a suitable Hilbert space.t 

Denote by N'o, ~1 and ~z  the set of  all bounded operators, the trace 
class and the Hilbert-Schmidt class of operators on 3/g, respectively.$ For  
B e No, T e  ~ l  and S e ~2, liB LI is the norm, tr Tthe trace, liTl[1 = tr ((T* T) l/z) 
the trace norm and I lS[12 = (tr(S* S)) 1/2 the Hilbert-Schmidt norm. g2  is 
a Hilbert space with the inner product 

(S, S')2 = t r (S* S')  

Density matrices are positive semidefmite self-adjoint W e  gx with 
IIWII~ = tr W =  1. Then W ~/2 e ~2 with IlW~/Zllz = 1, and for a self-adjoint 
A e No (a bounded observable) equation (1.2) is equivalent to 

(A)w = (W 1/2, A WX/2)2 (2.1) 

Thus states may equally well be described by unit vectors W ~/2 in the 
Hilbert space N2, whereas bounded observables A e No are represented in 
N2 by operator multiplication, and expectation values are given by (2.1). 

Consider, more generally, the multiplication operator B on N2 corre- 
sponding to an arbitrary B e No, i.e., 

BS = BS for all S e ~2 (2.2) 

B is bounded on N2 with norm I IBl]. There exists an isomorphism ~ of  ~2 
onto the product Hilbert space out ~ | o~t ~ such that (Dixmier, 1957) 

~ B ~ K  -~ = B | 1 (2.3) 

1" This formalism has been used before in quantum statistical mechanics (Haag et aL, 
1967; Wehrl, 1971). 

;~ An extensive discussion of Na and Nu may be found in Schatten's book (Schatten, 
1960). 
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Thus, by (2.3), instead of the mapping B -+ B the more familiar mapping 
B-+ B | 1 may be studied. The isomorphism ~P may be constructed 
explicitly as follows. Take an arbitrary antiunitary operator V on ~ ,  
and define 

~e'S(f, g) = f | Vg (2.4) 
with 

S(f,  g) -- I f )  <gl 

If extended by linearity and continuity, this ~ has the required properties, 
i.e., it maps &2 onto 3r ~ | 3/d, preserving linear combinations and inner 
products. Equation (2.3) is easily verified if applied to f | g, and the 
equality then extends to ~ | ~/g because both sides of(2.3) define bounded 
operators. 

For the mapping B-+ B | 1 we will need only the following very 
familiar result. If U(t) is a strongly continuous one-parameter group of 
unitary operators on ~ and E~ the corresponding spectral family of 
projection operators, i.e., 

U(t) = ~ exp(i2t)dE~ (2.5) 

then U(t) | 1 and E~ | 1 have corresponding properties, and in particular 

U(t) | 1 = jr exp (i2t)d(E~ | 1) (2.6) 

This follows immediately from the fact that the mapping B -+ B | 1 is a 
sufficiently continuous *-isomorphism (Dixmier, 1957). 

Now consider a self-adjoint operator A on ;/g, not necessarily bounded, 
with spectral representation (1.3), and the corresponding unitary one- 
parameter group U(t) given by (2.5). We will generalize the definition 
(2.2) to such A. This may be done in several different ways. By (2.3) and 
(2.6), U(t) and Ex are a unitary one-parameter group and a spectral family, 
respectively, on ~2, and 

U(t) = ~ exp (i2t) dE~ (2.7) 
This leads to: 

Definition 1 
A = ~ ~ dE~ (2.8) 

Equivalently, A may be defined as the self-adjoint generator of U(t), 

U(t) = exp (/At) (2.9) 

Another definition, which reduces to (2.2) for bounded A, is: 

Definition 2. Let D A be the set of all S ~ ~2 such that AS ~ ~2, and 

AS = AS for all S ~ DA (2.10) 

Lemma 2. The definitions (2.8) and (2.10) are equivalent. 
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Proof. Denote by D1 and D2 the domains DA corresponding to (2.8) 
and (2.10), respectively, and consider an arbitrary complete orthonormal 
system {ft[ i = 1 ,2 . . . )  in d/g. 

S ~ D1 is equivalent to 
P - I  

d(S, E~ S)2 = S2 2 d(tr(S*E~ S ) ) = ~  2 2 , , /~  ~ ; "  ~ 
, J  

In this expression, the sum over i may be interchanged with the integration, 
due to the positivity of the integrand.-~ Thus S ~ D~ is equivalent to 

1 42 d(Sf. E~Sf~) < ~ (2.11) 

for all complete orthonormal systems {f~}. 
S s D2 is equivalent to 

Sft~ Da 

and 

(2.12) 

(2.13) IIASU~I[ 2 < 
i 

for all complete orthonormal systems { fz}. Obviously (2.12) and (2.13) are 
equivalent to (2.11), thus D1 = D2. 

Finally, AS ~ ~2 implies A(SB) = (AS)B ~ ~2 for all B ~ ~o, and 
therefore S ~ DA implies SB ~ DA. Take f arbitrary and B = [ f ) ( f  [. 
Then, for A given by (2.8), we get 

[If 1[2 (f,  ASf) = tr (B* ASB) = (B, ASB)2 = S 2 d(B, Ez SB)2 
= S 2d(tr(B*E~SB)) = liflt 2 S 2d(f ,  E~Sf) = tlf[[2 (f,  AST) 

which implies AS = AS. | 

Remark 1. If  S s ~2 is self-adjoint, with eigenvalues sl # 0, orthonormal 
eigenvectorsf~ and spectral representation 

s=  s, iA> (AI 
i 

then S ~ DA if and only iff l  ~ Da for all i and 

s 2llAf l: < ~ (2.14) 
l 

I" It is easily shown that, for an ascending sequence of measures/t, converging to a 
measure/t and a non-negative function f(2), one has 

lim~f(~)dlt.(&) = 5 f(,~) d/t(2) 
n ~ a o  

In our case, take 

Alternatively, one may decompose the infinite ,t, interval into finite ones, and apply 
Helly's theorem (Dunford & Schwartz, 1958) to each of them. 
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3. Expectation Values 

The foregoing considerations allow an immediate generalization of 
Lemma 1. We define, in analogy to (1.5), 

(A)w  = lira (A,..)w = lim tr(A,.. W) = lim (W a/2, AT.. W~/2)2 
d. f .  m,n-~O~ m,n-*Oa m , n - ~  

(3.1) 

With a given self-adjoint operator A, the following conditions 

w~ = 1 (3.2) 
1 

Theorem 1. 
are equivalent for a density matrix 

W= ~ w, IA) <AI, w, > O, 
l 

(1) The limit (3.1) exists. 
(2) B• W ~/2 ~ &2, with B_ defined by (1.6). 

(3) S 141 d(tr (Ex W)) < oo 
(4) fi~/3,1, with/3A defined by (1.8), for all i, and ~ willB+_f~[I 2 < 

For such IV, the expectation value (3.1) of  A is also given by 

(A)w = liB+ Wa/21h2 - liB_ WX/21122 --- j" 2 d(tr (E~ W)) = ~ w,<A>:, 
l 

(3.3) 

This follows from Lemma 1 if we replace ~ by &2, A by A, f ~  ~ by 
W ~12 ~ &2, and use Lemma 2 and Remark 1 of  Section 2. 

Remark2. If  A W ~  &l, then 

(A)w = tr(A W) = ~ w~(fu Af0 
i 

(3.4) 

Proof. According to (1.7), A+ __p_ (1 - Eo)A, A_ ~_ EoA. This implies that 
A W ~ I  if and only if A+W~&I .  A+_W~&I implies, with (3.2), 
f~ ~ DA+ -~ DB~ and 

~ztr (A+ W) = : ~  w~(fu A+_f~) = Z w~lIB~f~[I 2 < co 
i 1 

Therefore, (A)rv exists, and is equal to 

w~(IIB+AII 2 - Iln_f~l[ 2) -- tr(A+ W) + tr(A_ W) = tr (A W) 
i 

Remark 3. If  A W  1/2 ~ &2, then 

(A)vr = ( W 1/2, A W1/2)2 

[This is a particular case of  equation (3.4).] 

(3.5) 
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For pure states W =  [ f ) ( f ] ,  the particular cases (3.4) and (3.5) both 
correspond to f ~  Da with equation (1.11). 

Remark 4. If B+ W ~/2 belong to N2, the same is true for the closures 
(W1/2 B+_) ** o f  W1/2 B+_, and 

(A )w  = II(W 1/e B+)**lh z - i[(W ~/2 B-)**lh z 

This follows because (W1/ZB+_) * =B+_W I/z, and 11S*112= [lSIh for all 
S e N2. Similar considerations apply to the cases A W E N~ and A WI/z ~ ~2, 
thus leading to the formulae 

(A )w  = tr ((WA)**) 
and 

( A ) w  = ( W  ~/2, ( W  1/z A)**)z 
respectively. 

Another property of expectation values for pure states f is given by: 

Lemma 3. F o r f ~ / 3 a  and U(t) = exp(iAt), the function 

Gs(t ) = (f ,  U ( t ) f )  (3.6) 

is differentiable for all t, and 
1 
= G:'(O) = ( A ) f  (3.7) 
1 

Proof S i n c e f e / S a  means 

I 12[ d ( f ,  E~ f )  < oo 
the estimate 

l { e x p  [i)~(t + z)] -- (i2t)} ~< ]).[ e x p  

and the dominated convergence theorem of Lebesgue (Hewitt & Stromberg, 
1965, p. 174) allow us to interchange the limit z --> 0 with the integration 
in the expression 

lim f l { e x p  [i2(t + z)] - exp (i2t)} d(f ,  E~.f) I 
7"~0 d 

If, as above, we replace ~ by N2, A by A a n d f b y  W ~:z, Lemma 3 leads to: 

Theorem 2. For W satisfying the conditions of  Theorem 1, the function 

Gw(t) = tr (U(t) W) (3.8) 

is differentiable for all t, and 

1 
= Gw'(O) = (A )w  (3.9) ! 
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The converse of  Lemma 3 is not true, i.e., G/(t)  may exist for some 
fq~/~A. This is illustrated by the following example. Take 3r ~ =L2(•1), 
A = multiplication by x ~ ~1 and 

f (x )  = a/--~x for ixl/> 1 

0 for [xl < 1 

With (E~f) (x) = 0(2 - x) f (x )  we get 

I 
_ 1  for 2 ..<-I 

22 

(f, E~f)  = �89 for 121 < 1 

1 
1 - 22 for 2/> 1 

and thus f ]2] d(f ,  E~f)  diverges, whereas 

Gs(t ) = f exp (/At) d(f, E~f)  = cos t + t 
s 

is differentiable for all t. One might be tempted to define (A)w by equation 
(3.9) for all W for which this definition makes sense. However, this more 
general definition would violate the physical interpretation given in the 
Introduction. 

4. Mean Square Deviations 

With the same physical motivation as for expectation values, we define 
the mean square deviation AwA of  an observable A in a state W by 

(AwA) 2 =  lim (AwAm.) 2 (4.1) 
d.f. m, nooO 

with the usual definition 

(Aw Am.) 2 = ( (Am.  - ( A m . ) w ) 2 ) w  = ( A ~ . ) w  - ( A m . ) w  2 

for the bounded observables Am,- 
It is quite plausible that the existence of  the limit (4.1) which contains 

Am, quadratically implies the existence of  (A)w as defined by (3.1) which 
contains Am, only linearly. If  this is taken for granted, then instead of  (4.1) 
we need only investigate the existence of  

lim 2 (Am,)w (4.2) 

By a slight modification of  the methods applied above, we then immediately 
get the following results. 
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Lemma 4. The mean square deviation 

A y A =  lim AsA,~,, (4.3) 
m,,-,0o 

of an observable A in a pure statefexists if and only i f f ~  Da, and 

(A~A) 2 = IlAf[[ 2 - ( A ) f  2 = f ;~2d(f, E x f )  - (I 2d( f ,  E~f))  2 (4.4) 

Theorem 3. The following conditions for W =  ~ wi[ f i ) ( f i ]  are equiva- 
lent. 

(1) The limit (4.1) exists. 
(2) A W 1/2 ~ ~2 
(3) J" ;~2 d(tr (E~ W)) < oo 
(4) f l  E Da for all i, and ~ willAf~[[ 2 < 0o 

l 
For such W, 

(Aw A) 2 = [IA WLI21122 - ( A ) w  2 

= f 2 2 d(tr (Ez W)) - [f 2 d(tr (Ex W))] 2 )2 
= ~ wIIIAAtl 2 - wi(Z,  AZ)  (4.5) 

A more rigorous proof  of Lemma 4, which avoids the above-mentioned 
plausibility argument, is given in the Appendix. 

Remark 5. Because 2 (A, , , )w increases monotonically with m and n, we 
may equally well consider the single limit 

lim (A2, )w (4.6) 
/1--)oo 

instead of the double limit (4.2). The same simplification is allowed in 
equation (4.1), as shown in the Appendix. 

Remark 6. We may also write 

(A s A y  = (A2)s  - ( A ) s  2 
and 

(A w A) 2 = (A2)w - ( A ) w  2 

as suggested by (4.4) and (4.5). 

(4.7) 

(4.8) 

This is due to the fact that the limit (4.6) coincides with (Aa)w as defined 
by an equation analogous to (3.1). Because A 2 is non-negative, we need 
in this case an upper cutoff only, say n 2, and obtain 

(Ae)w = lim ([A2]n2) 
/I 2__> 0o 

with 
n 

[A2],,~ = f 2 2 dE~. + n2(1 - E, + E_,) - A,2,, 
w n  
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Another useful relation is obtained, for A W ~/2 e ~2, from 

11(.4 - (A),~) wl/21h2 = ((.4 - (-4~w) w ~:~, (A - ( A ) w )  W~/2h 

= HA W1/2[122 + (A)w 2 - (A)w {(W */z, A W1/2)2 + (A W ~/2, W1/2)2 } 

Because A is self-adjoint, the term in curly brackets becomes 

2(W 1/2, A W1/2)2 = 2(A)w 

by (3.5). Thus 

Aw A = II(A - ( A ) w )  mx:21h (4.9) 

The corresponding formula for pure states is 

A:A = [[(A - (A):)f[[ (4.10) 

Equations (4.9) and (4.10) lead to general uncertainty relations. Consider 
two observables A and B and states W such that both AwA and AwB are 
defined, i.e., W ~/2 ~ DA fq DB. For S, S' E ~2, the Schwarz inequality 
yields 

118112118'112 > [(8, 8 ')2[/> lIm (8, 83212 �89 S ' h -  (8 ' ,  8)21. 

If applied to 

8 = (.4 - (a>w)  w ~/~, 8 '  = (B - (~>w) W ~/2 

this estimate and (4.9) yield after a short calculation: 

Theorem 4. For any two observables A and B, the uncertainty relation 

AwA.AwB>~ �89 ~/2, BW1/2)2 - (BW ~/2, AW~/2)2[ (4.11) 

holds true for all W, for which both AwA and AwB are defined. 

The corresponding relation for pure states reads 

A : A .A : B >~ �89 I(Af, Bf) - (Bf, Af)[ (4.12) 

f o r f ~  Da f3 DB. This relation is a generalization of the estimate 

A:A.A:B>~�89 [A,B]f) l ,  [ A , B ] - A B - B A  

which can be found in all textbooks but which may be misleading in some 
cases, because [A, B]fneed not be defined for a l l f~  DA fq Dn. 

For W= ~ w~[f~) (fi[, (4.11) reads 
i 

AwA.AwB>~ �89 ~ w~((Af, Bf~) - (BZ, Af0) (4.13) 

With this formula, previous discussions of uncertainty relations for pure 
states (Kraus, 1965, 1967, 1970) can now be easily generalized to state 
mixtures W. 
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Appendix : Proof  o f  Lemma 4 

We introduce the abbreviation 

[~1~, = 
- m  

Then 

and 

with 

and 

if~.> n 
i f -m~<2~<n 
if Z < - m  

A,.n = I [,q"., dE, 

( &  A,.nY = .~ ( [ , q D  ~ d~(,~) - [j" [,~1~. d~(,~)] ~ 

= �89 j ' j ' fn, ,(2,  L ' )d#( )O d # ( 2 ' ) =  a,~. 

#(Jl) = (f ,  E , f )  

f , ,n( 'L 2 )  = ([,q",. - -  [ 2 1 D  ~ 
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(A.1) 

(A.2) 

By Fubini's theorem (Hewitt & Stromberg, 1965, p. 385), the double 
integral in (A.2) may be considered as an integral with the product measure 
#(,t) x t,(,~'). 

A straightforward but somewhat lengthy calculation leads to 

fro,(2, 2') <<.fro,,,(2, 2~') 

for n ~< n', m 4 m', which implies 

amn ~ ann' n' 

Therefore the double limit 
lim a,,n 

m ,  n--> oo 

which occurs in the definition (4.1) of (A,A) 2 may be replaced by a single 
limit, i.e., 

(AsA)2 = lim ann (A.3) 
17--> O9 

[This is also true with #(Z) = tr(E, W), i.e., for (4.1) with a general state W.] 
Moreover, the non-decreasing sequence of functionsf, n(2, 2') approaches 

(Z - 2') 2 for n -+ co. By the theorem of B. Levi (Hewitt & Stromberg, 
1965, p. 172) we have 

lim ann = �89 S (2 - 2 ' )  2 d(/~(Z) x # (2 ' ) )  < m ( A . 4 )  
I1--~ cO 

if (A s A) 2 exists. 
Again by Fubini's theorem, (A.4) may be evaluated as a double integral. 

Thus g(2)= 2 -  ~' is square-integrable, for almost all 2', with respect to 
/~(2). Because h(2)= ,V= const, is square-integrable too, the same is true 
for g(2) + h(2) = 2, i .e . , f~  DA. 
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Vice versa, for  f e  DA bo th  terms in (A.1) converge 
m = n ---> oo, thus leading immedia t e ly  to equa t ion  (4.4), 

separa te ly  for  
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